Что такое вязкая жидкость. Коэффициент вязкости. Коэффициент динамической вязкости. Физический смысл коэффициента вязкости

), свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно Другой. В. тв. тел обладает рядом специфич. особенностей и рассматривается обычно отдельно (см. ВНУТРЕННЕЕ ТРЕНИЕ). Осн. закон вязкого течения был установлен И. Ньютоном (1687):

где F - тангенциальная (касательная) , вызывающая слоев жидкости (газа) друг относительно друга, S - площадь слоя, по к-рому происходит сдвиг, (v2-v1)/(z2-z1) - градиент скорости течения (быстрота изменения её от слоя к слою), иначе - сдвига (рис. 1).

Рис. 1. Схема однородного сдвига (вязкого течения) слоя жидкости высотой h, заключённого между двумя тв. пластинками, из к-рых нижняя (A) неподвижна, а верхняя (В) под действием тангенциальной силы F движется с пост. скоростью v0; v(z) - зависимость скорости слоя от расстояния z до-неподвижной .

Коэфф. пропорциональности h называется коэфф. динамической вязкости или просто В. Он характеризует сопротивление жидкости (газа) смещению её слоев. Величина j=1/h) наз. текучестью.

Согласно ф-ле (1), В. численно равна тангенциальной силе, приходящейся на ед. площади, необходимой для поддержания разности скоростей, равной единице, между двумя параллельными слоями жидкости (газа), расстояние между к-рыми равно единице. В системе СИ ед. динамич. В.- Па с (в СГС - ). Наряду с динамической часто рассматривают т. н. кинематическую В. v=h/r (где r - в-ва), к-рая измеряется в м2/с (в СИ; в СГС - в стоксах). В. жидкостей и газов определяют вискозиметрами.

В условиях установившегося ламинарного течения при пост. темп-ре T В. газов и норм. жидкостей (т. н. ньютоновских жидкостей) пост. величина, не зависящая от градиента скорости. Ниже приведены значения В. нек-рых жидкостей и газов при:20°С (в 10-3 Па с).

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Синонимы :

Вязкость – это свойство жидкости оказывать сопротивление сдвигающим усилиям. Вязкость - свойство, присущее как капельным жидкостям, так и газам, которое проявляется только при движении, не может быть обнаружено при покое, и проявляется в виде внутреннего трения при перемещении смежных частиц жидкости. Вязкость характеризует степень текучести жидкости и подвижности ее частиц. Вязкостью жидкостей объясняется сопротивление и потери напор, которое возникает при движении их по трубам, каналам и прочим руслам, а также при движении в них инородных тел.

Изучение свойств внутреннего трения жидкости активно занимался Исаак Ньютон, заложив основы учению о вязкости. Ньютон высказал предположение (впоследствии подтвержденное опытом), что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. В итоге, И.Ньютон получил зависимость, характеризующую связь вязкости с явлением внутреннего трения, получившую название одноименного закона.

Пусть жидкость течет вдоль плоской стенки параллельными слоями. Каждый слой будет двигаться со своей скоростью, причем скорость слоев будет увеличиваться по мере отдаления от стенки.

Рассмотрим два слоя жидкости, движущиеся на расстоянии Δy друг от друга. Поскольку между слоями присутствует сила трения и благодаря взаимному торможению различные слои имеют различные скорости, и слой А движется со скоростью v, а слой Б – со скоростью (v+Δv). Величина Δv является абсолютным сдвигом слоя А по слою Б, а величина Δv/Δy – относительным сдвигом, или градиентом скорости. Тогда при движении возникает касательное напряжение τ (тау), которое характеризует трение на единицу площади (напряжением внутреннего трения) . Напряжение внутреннего трения имеет физический смысл зависимости:

где F тр – сила внутреннего трения, Н; S – площадь соприкосновения поверхностей, м 2 .

Тогда согласно закону Ньютона зависимость между напряжением и относительным сдвигом будет иметь вид:

т.е. напряжение внутреннего трения пропорционального градиенту скорости.

Коэффициент пропорциональности µ (мю) называется динамическим коэффициентом вязкости. Из формулы видно, что динамический коэффициент вязкости численно равен напряжению внутреннего трения в том случае, когда относительная скорость двух плоскостей А и Б, отстоящих друг от друга на расстоянии 1 м, равна 1м/с.

Размерность динамического коэффициента вязкости следует из формулы. Так как напряжение τ есть сила, отнесенная к единице площади, то его размерность равна:

.

Размерность градиента скорости:

Отсюда размерность динамического коэффициента вязкости:

.

Таким образом, за единицу измерения динамической вязкости в системе единиц СИ принимают:

В физической системе единицей динамической вязкости является пуаз, обозначается «П »:

Динамическая вязкость у капельных жидкостей, молекулы которых расположены весьма близко друг к другу, при повышении температуры уменьшается в связи с увеличением скорости броуновского движения, ос­лабляющего удерживающие связи, то есть силы сцепления.

Зависимость коэффициента μ от температуры в общем виде выражается формулой:

где - значение при t = 0°C; а и b - опытные коэффициенты, зависящие от физико-химических свойств (от рода) жидкости; t - температура жидкости в °С.

У газов силы притяжения между молекулами проявляют себя только при сильном сжатии, а в обычных условиях молекулы газов находятся в состоянии хаотичного теплового движения и трение слоев газа друг о друга происходит только вследствие столкновения молекул. При повышении температуры скорость молекул возрастает, растет число их столкновений и вязкость возрастает.

Для пресной воды Пуазейлем получена формула:

. (1.3)

Для воздуха известна формула Милликена:

В гидравлике для характеристики вязких свойств газов и паров иногда вместо динамического употребляется другой коэффициент вязкости, обозначаемый буквой η (эта) и связанный с динамическим коэффициентом уравнением

где g – ускорение силы тяжести, м/с 2 .

Величину, обратную динамической вязкости называют текучестью .

Вязкость для всех капельных жидкостей убывает с повы­шением температуры. Для получения точных гидравлических расчетов рекомендуется иметь график (или таблицу) зависимости вязкости от температуры, построенный на основе спе­циальных определений в лаборатории. Весьма осторожно следует относиться к различного рода номограммам и формулам, служащим для определения вязкости смеси двух или нескольких различных нефтепродуктов.

График, характеризующий зависимость изменения вязкости жидкости от температуры называется вискограммой (Рис. 1.3).

Рис.1.3. Вискограмма

Для определения вязкости жидкости при любой произвольной температуре T с достаточной точностью используется формула Рейнольдса-Филонова:

где ν - вязкость при известной температуре Т , u – коэффициент крутизны вискограммы, который характеризует угол наклона касательной вискограммы к оси абсцисс (Рис. 1.4) и определяется по формуле:

Рис.1.4 Определение коэффициента крутизны вискограммы

Таким образом, можно охарактеризовать любую жидкость и определить ее вязкость при любой температуре, зная координаты двух произвольных точек вискограммы. Стоит заметить, что для капельных жидкостей коэффициент вискограммы положителен, однако существуют жидкости, у которых вязкость мало изменяется при изменении температуры, для газообразных - коэффициент вискограммы отрицателен. Существуют жидкости, вязкость которых мало зависит от температуры, они представляют собой сложные химические соединения и используются в качестве рабочих в гидравлических машинах, например в вискомуфтах.

Существуют жидкости, для которых закон И. Ньютона неприменим. В отличие от обычных, ньютоновских, эти жидкости называют неньютоновскими , или аномальными.

Значения кинематической вязкости ν воды и воздуха

Определение и формула коэффициента вязкости

ОПРЕДЕЛЕНИЕ

Вязкостью называют один из видов явлений переноса. Она связана со свойством текучих веществ (газов и жидкостей), сопротивляться перемещению одного слоя относительно другого. Это явление вызывается движением частиц, которые составляют вещество.

Выделяют динамическую вязкость и кинематическую.

Рассмотрим движение газа, обладающего вязкостью как перемещение плоских параллельных слоев. Будем считать, что изменение скорости движения вещества происходит по направлению оси X, которая перпендикулярна к направлению скорости движения газа (рис.1).

В направлении оси Y скорость движения во всех точках одинакова. Значит, скорость является функцией . В таком случае, модуль силы трения между слоями газа (F), которая действует на единицу площади поверхности, которая разделяет два соседних слоя, описывается уравнением:

где — градиент скорости () по оси X. Ось X перепендикулярна направлению движения слоев вещества (рис.1).

Определение

Коэффициент (), входящий в уравнение (1) называется коэффициентом динамической вязкости (коэффициентом внутреннего трения). Он зависит от свойств газа (жидкости). численно равен количеству движения, которое переносится в единицу времени через площадку единичной площади при градиенте скорости равном единице, в направлении перпендикулярном площадке. Или численно равен силе, которая действует на единицу площади при градиенте скорости, равном единице.

Внутренне трение — причина того, что для течения газа (жидкости) сквозь трубу необходима разность давлений. При этом, чем больше коэффициент вязкости вещества, тем больше должна быть разность давлений для придания заданной скорости течению.

Коэффициент кинематической вязкости обычно, обозначают . Он равен:

где — плотность газа (жидкости).

Коэффициент внутреннего трения газа

В соответствии с кинетической теорией газов коэффициент вязкости можно вычислить при помощи формулы:

где — средняя скорость теплового движения молекул газа, — средняя длина свободного пробега молекулы. Выражение (3) показывает, что при низом давлении (разреженный газ) вязкость почти не зависит от давления, так как Но такой вывод справедлив до момента, пока отношение длины свободного пробега молекулы к линейным размерам сосуда не станет приблизительно равным единице. При увеличении температуры вязкость газов обычно растет, так как

Коэффициент вязкости жидкостей

Считая, что коэффициент вязкости определен силами взаимодействия молекул вещества, которые зависят от среднего расстояния между ними, то коэффициент вязкости определяют экспериментальной формулой Бачинского:

где — молярный объем жидкости, А и B — постоянные величины.

Вязкость жидкостей с ростом температуры уменьшается, при увеличении давления растет.

Формула Пуазейля

Коэффициент вязкости входит в формулу, которая устанавливает зависимость между объемом (V) газа, который протекает в единицу времени через сечение трубы и необходимой для этого разностью давлений ():

где — длина трубы, — радиус трубы.

Число Рейнольдса

Характер движения газа (жидкости) определяется безразмерным числом Рейнольдса ():

— величина, которая характеризует линейные размеры тела, обтекаемого жидкостью (газом).

Единицы измерения коэффициента вязкости

Основной единицей измерения коэффициента динамической вязкости в системе СИ является:

1Па c=10 пуаз

Основной единицей измерения коэффициента кинематической вязкости в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Динамически вязкость воды равна Па с. Какая величина предельного диаметра трубы позволит течению воды остаться ламинарным, если за 1 с через поперечное сечение вытекает объем воды равный ?
Решение Условие ламинарности течения жидкости имеет вид:

Где число Рейнольдса найдем по формуле:

Скорость течения воды найдем как:

В выражении (1.3) — высота водяного цилиндра, имеющего объем :

В любой жидкости под влиянием внешней силы происходит перемещение молекул вещества относительно друг друга. Возникающее при этом трение между молекулами, т. е. внутреннее сопротивление этому перемещению, называется внутренним трением, или вязкостью.

Вязкость является важной физической константой, играющей роль при выборе того или иного типа насоса. Для оценки вязкостных свойств жидкостей пользуются единицами динамической, кинематической, удельной и условной вязкости.
Динамическая (абсолютная) вязкость n – это сила сопротивления, которое возникает при перемещении со скоростью 1 см/с двух слоев жидкости площадью в 1 см2, находящихся друг от друга на расстоянии 1 см. Если эта сила будет равна 1 дин, то динамическая вязкость в единицах СGS выражается в граммах на сантиметр на секунду (г/(см/с)) и соответствует 1П (пуазу). Сотая часть пуаза составляет сантипуаз (сП). В единицах СИ динамическая вязкость выражается в паскаль-секундах

(Па*с); 1П = 0,1Па*с; 1 сП = 0,001 Па*с. Например: динамическая вязкость дистиллированной воды при 20,2оС равна 1 сП=1 мПас

Динамическая вязкость может быть определена опытным путем с по-мощью вискозиметра Уббелоде. С достаточной точностью ее нетрудно вычислить, не прибегая к опыту, по формуле:

n = v*p, где v – кинематическая вязкость; p – плотность нефтепродукта при температуре определения вязкости.
Кинематическая вязкость v есть отношение динамической вязкости нефтепродукта к его плотности при той же температуре.
Единицей кинематической вязкости является стокс (Ст), выражаемый в системе СGS в сантиметрах в квадрате на секунду (см2/с). Сотая доля стокса есть сантистокс (сСт); 1сСт = 0,01 см2/с. В единицах СИ: 1Ст = 10-4 м2/с; 1сСт = 10-6 м2/с. В стандартах на дизельное топливо и смазочные масла кинематическая вязкость нормируется в миллиметрах в квадрате на секунду (мм2/с) или сантистоксах (сСт); 1 сСт = 1 мм2/с.
Удельной вязкостью n уд называется отношение динамической вязкости продукта к динамической вязкости дистиллированной воды при 20,2оС. Численно принято считать, что удельная вязкость равна динамической вязкости продукта, умноженной на 100: n уд = 100n.

Условная вязкость представляет собой отношение времени истечения 200 мл продукта через калиброванное отверстие специального прибора – вискозиметра – при температуре t ко времени истечения такого же объема дистиллированной воды при 20оС.

Условная вязкость является отвлеченной величиной и выражается в условных единицах в зависимости от применяемого вискозиметра: для вискозиметра Энглера – в градусах Энглера (Ео), или в градусах условной вязкости (ВУ); для вискозиметра Сейболта – в секундах Сейболта; для вискозиметра Редвуда – в секундах Редвуда.

Между условной и кинематической вязкостью установлена эмпирическая зависимость, которая выражается следующими приближенными формулами:
для v = 1 – 120 мм2/с vt = 7,24 ВУt – 6.25/ВУ t (мм2/с); для v > 120 мм2/с vt = 7,24 ВУt.

Этими формулами можно пользоваться при переводе кинематической вязкости в градусы условной вязкости для практической оценки вязкостных свойств родукта.Обратный перевод для расчетных целей делать не рекомендуется, так как определение условной вязкости продукта недостаточно точно и условная вязкость не отражает физических свойств жидкости.
Наибольшее распространение при различных расчетах, а также при контроле качества продуктов получила кинематическая вязкость. Динамическую вязкость определяют в основном в научно-исследовательских работах. Вязкость продуктов существенно зависит от температуры, поэтому получаемое значение вязкости должно обязательно сопровождаться указанием температуры, при которой определялась вязкость.

Определение кинематической вязкости нефтепродукта в капиллярных в искозиметрах.

Приборы для определения вязкости называются вискозиметрами. Чаще всего для определения кинематической вязкости по ГОСТ 33-82 пользуются стеклянными вискозиметрами типа.

Пинкевича и ВПЖТ-2 с помощью которых измеряют кинематическую вязкость продуктов при положительных и отрицательных значениях температуры.
В основе метода лежит известная формула Пуазейля для динамической вязкости:
n=(3.14Pr4/8LV) ?
где

  • Р – давление, при котором происходит истечение жидкости из капилляра
  • r – радиус капилляра
  • L – длина капилляра
  • V – объем жидкости, протекающей через капилляр
  • ? – время истечения жидкости в объеме V.

Приборы и материалы

В работе используют:

Вискозиметр типа ВПЖТ-2 термо-статирующее устройство, обеспечивающее длительное поддержание заданной температуры с точностью ± 0,03оС при точных и ± 0,1оС – при технических измерениях Термометр ртутный стеклянный с ценой наименьшего деления шкалы 0,05оС для точных и 0,2оС – для технических измерений секундомер термостатирующую жидкость: дистиллированную воду, глицерин или смесь глицерина с водой в соотношении 1:1

Порядок проведения измерения

Для определения кинематической вязкости вискозиметр подбирают таким образом, чтобы время течения нефтепродукта было не менее 200 с. Затем его тщательно промывают и высушивают. Пробу испытуемого продукта профильтровывают через бумажный фильтр. Вязкие продукты перед фильтрованием подогревают до 50–100оС. При наличии в продукте воды его осушают сульфатом натрия или крупнокристаллической поваренной солью с последующим фильтрованием. В термостатирующем устройстве устанавливают требуемую температуру.
Точность поддержания выбранной температуры имеет большое значение, поэтому термометр термостата должен быть установлен так, чтобы его резервуар оказался примерно на уровне середины капилляра вискозиметра с одновременным погружением всей шкалы. В противном случае вводится поправка на выступающий столбик ртути по формуле: ^t = Bh(t1 – t2) где

  • B – коэффициент температурного расширения рабочей жидкости термометра:
    • для ртутного термометра? = 0,00016
    • для спиртового – 0,001
  • h – высота выступающего столбика рабочей жидкости термометра, выраженная в делениях шкалы термометра
  • t1 – заданная температура в термостате, оС
  • t2 – температура окружающего воздуха вблизи середины выступающего столбика, оС.

Определение времени истечения повторяют несколько раз. В соответствии с ГОСТ 33-82 число измерений устанавливают в зависимости от времени истечения: пять измерений – при времени истечения от 200 до 300 с; четыре – от 300 до 600 с и три – при времени истечения свыше 600 с. При проведении отсчетов необходимо следить за постоянством температуры и отсутствием пузырьков воздуха.
Для подсчета вязкости определяют среднее арифметическое значение времени истечения. При этом учитывают только те отсчеты, которые отличаются не более чем на ± 0,3 % при точных и на ± 0,5 % при технических измерениях от среднего арифметического.

Обработка результатов измерений

Кинематическую вязкость испытуемого нефтепродукта при температуре t вычисляют по формуле:
Vt=Ct*(g/9.807)*K где

  • С – постоянная вискозиметра, мм2/с2
  • t – среднее арифметическое учитываемых отсчетов времени истечения жидкости, с
  • g – ускорение силы тяжести в месте измерения вязкости, м/с2
  • 9,807 – нормальное ускорение силы тяжести, м/с2
  • К = 1 + 0,00004^t – коэффициент, учитывающий изменение гидростатического напора жидкости вследствие расширения ее при нагревании
  • ^t – разность между температурой продукта при заполнении вискозиметра и его температурой при определении вязкости.

Кинематическую вязкость нефтепродукта вычисляют с точностью до четвертой значащей цифры, например: 1,255; 16,47; 193,1; 1735.

Доставка

Оборудование доставляется по указанному заказчиком адресу собственным транспортом или отправляется транспортной компанией по адресу нахождения терминалов в следующих городах:
Абакан, Адлер, Архангельск, Астрахань, Барнаул, Белгород, Благовещенск, Братск, Брянск, Великие Луки, Великий Новгород, Владивосток, Владимир, Волгоград, Волгодонск, Волжский, Вологда, Воронеж, Дзержинск, Димитровград, Екатеринбург, Забайкальск, Иваново, Ижевск, Иркутск, Йошкар-Ола, Казань, Калининград, Калуга, Кемерово, Киров, Коломна, Кострома, Котлас, Краснодар, Красноярск, Курган, Курск, Липецк, Магнитогорск, Москва, Мурманск, Набережные Челны, Нижневартовск, Нижний Новгород, Нижний Тагил, Новокузнецк, Новомосковск, Новороссийск, Новосибирск, Ногинск, Омск, Орел, Оренбург, Орск, Пенза, Пермь, Петрозаводск, Подольск, Псков, Пушкино, Ростов-на-Дону, Рыбинск, Рязань, Самара, Санкт-Петербург, Саранск, Саратов, Северодвинск, Серпухов, Смоленск, Солнечногорск, Сочи, Ставрополь, Старый Оскол, Стерлитамак, Сургут, Сызрань, Сыктывкар, Тамбов, Тверь, Тольятти, Томилино, Томск, Тула, Тюмень, Улан-Удэ, Ульяновск, Уфа, Ухта, Хабаровск, Чебоксары, Челябинск, Череповец, Чита, Энгельс, Ярославль.

Стоимость, срок поставки уточняйте у менеджеров.

Средняя стоимость доставки на примере насоса Spring MS1

Адлер(Красн.кр.) Аксай(Рост.обл.) Анапа(Красн.кр.) Апатиты(Мурм.обл.) Арзамас(Нижег.обл.) Армавир(Красн.кр.) Архангельск Астрахань Балаково(Сар.обл.) Барнаул Белгород Брянск(Брянс.обл.) Великий Новгород(Новг.обл.) Великий Устюг(Волог.обл.) Владикавказ(Осетия) Владимир(Влад.обл.) Волгоград Волгодонск(Рост.обл.) Волжский(Волг.обл.) Вологда Вольск(Сар.обл.) Воронеж Геленджик(Красн.кр.) Дзержинск(Нижег.обл.) Ейск(Красн.кр.) Екатеринбург Ессентуки(Ставроп.) Иваново(Иван.обл.) Ижевск Йошкар-Ола Казань Калуга(Калуж.обл.) Камышин(Волг.обл.) Кемерово Киров Кисловодск(Ставроп.) Коряжма(Арханг.обл.) Кострома(Костр.обл.) Котлас(Арханг.обл.) Краснодар Красноярск Кропоткин(Красн.кр.) Курган Курск Лермонтов(Ставроп.) Липецк(Липец.обл.) Магнитогорск(Челяб.обл.) Минеральные Воды(Ставроп.) Москва Мурманск Муром(Влад.обл.) Набережные Челны Нальчик(Каб.-Балк.) Невинномысск(Ставроп.) Нижний Новгород Нижний Тагил Новороссийск(Красн.кр.) Новосибирск Новотроицк(Оренб.обл.) Новочеркасск(Рост.обл.) Омск Орел(Орлов.обл.) Оренбург Орск(Оренб.обл.) Пенза Пермь Петрозаводск Псков(Псков.обл.) Пятигорск(Ставроп.) Ростов-на-Дону Рыбинск(Яросл.обл.) Рязань(Ряз.обл.) Самара Санкт-Петербург Саранск(Мордов.) Саратов Северодвинск(Арханг.обл.) Смоленск(Смол.обл.) Сочи Ставрополь Старый Оскол(Белг.обл.) Сургут Сызрань(Сам.обл.) Сыктывкар Таганрог(Рост.обл.) Тамбов(Тамбов.обл.) Тверь(Твер.обл.) Тольятти Томск Туапсе(Красн.кр.) Тула Тюмень Ульяновск Уфа Ухта(Коми) Чебоксары Челябинск Черкесск(Карач.-Черк.) Шахты(Рост.обл.)

  • Каталог насосов
  • Определение вязкости продукта


2024 supertachki.ru. Ходовая часть. Обзоры. Топливная система. Шины и диски. Салон. Двигатель.